
Automatic Harmonization using Recurrent Neural
Networks

Oriol Barbany∗, Natalia Gullon† and Sophia Kypraiou‡
Machine Learning (CS-433), School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne
Email: ∗oriol.barbanymayor@epfl.ch, †natalia.gullonaltes@epfl.ch, ‡sofia.kypraiou@epfl.ch

Abstract—Over the past years, the time series problem has
been completely leveraged by Recurrent Neural Networks and
their variants, making them lead to very good results in fields
like speech synthesis and natural language processing. This paper
applies this architecture to the music field with the aim of using
the Annotated Beethoven Corpus (ABC) to learn the underlying
structure of the chord sequences in Beethoven’s string quartets.
Our model is aimed to predict the chords that follow a given
sequence of arbitrary length provided by the user and it also
offers the option to condition the predicted chords by some
features like the global key or the length of the phrases.

Index Terms—Recurrent Neural Networks, Music Processing,
Time series, Computational Models of Music

I. INTRODUCTION

This work focuses on exploiting the possibilities of the
standardized and computer-readable way of labelling chords
with harmonic analysis symbols used at the Digital and Cog-
nitive Musicology Laboratory of EPFL to create the Annotated
Beethoven Corpus (ABC) [1], which consists of Beethoven’s
string quartets provided with experts’ harmonic analysis. We
present a model for Automatic Harmonization, which is mo-
tivated by the fact that chords in classical music are most
of the time predictive and the same patterns are repeated in
several occasions (plagal cadence, perfect authentic cadence,
etc.). The model is based on Recurrent Neural Networks
(RNNs), which are feed by a combination of both the previous
chords and the features acting as conditioners of the future
predictions. Another part of the presented model is dedicated
on embedding the chords into a meaningful dimension based
on the musical temperament before combining them with the
conditioners. In the following sections, this representation is
discussed and all the steps that lead to the final model are
explained.

II. METHODOLOGY

A. Data cleaning

The dataset of study consists of the harmonic analyses
of the chords in Beethoven’s string quartets. Opposite to
other similar time series problems, where we have equally
spaced temporal features like speech synthesis, the chords can
be defined with different temporal separation as depicted in
Figure 1. Moreover, we also front both short-term and long-
term dependencies, where these values can range from a few
chords to some thousands. With special emphasis of this very
long-term dependency, in classical music it is very usual that

Fig. 1. Extract of the third movement of the String Quartet No. 8 in E minor

patterns exposed along with other movements are reused and
thus certain chords are influencing others of a distant future.

The smallest natural sequence division in the dataset is
labelled by a special feature which indicates where the phrase-
ends are. This can be thought analogously as any phrase in
natural language, where we have a dot to indicate the endings.
In the dataset of interest, we have a certain sequence of
chords that can be considered as a phrase or not depending on
the annotator criterion. Therefore, ambiguity is much higher
compared to dots delimiting sentences.

Even with the splitting by phrases, the smallest and presum-
ably independent sequence of chords, we find very different
lengths in our dataset (see Figure 3), as well as very long
phrases, which is not desirable in a framework with RNNs.
On the one hand, it is convenient to have sequences with the
same length to train a RNN using several sequences at the
same time to speed up the process, as well as to have losses
in the same order of magnitude. On the other hand, adding
a padding to every phrase to fit the maximum length would
face exploding and vanishing gradient problems due to training
with very long sequences. This is usually tackled by truncating
the sequences, as we propose. The following sections discuss
two of the approaches that we implement to handle the data
preparation. In later sections, the results obtained with both
will be compared.

Aside of splitting the dataset into sequences which can
be used to train a RNN, the pre-processing of the data is
also centered on cleaning the chords. Chords are provided as
regular expressions, where not only the chord itself is repre-
sented, but also additional information such as the previously
mentioned end of phrases, the global key, the presence or
absence of a pedal, etc. The unique number of chords in this
case goes over one thousand, which is not very representative
of the distinct chords in the standard Roman numeral notation,

mailto:oriol.barbanymayor@epfl.ch
mailto:natalia.gullonaltes@epfl.ch
mailto:sofia.kypraiou@epfl.ch


Input Chords Input Chords
Embedding 

Vocabulary size: 282 (unique chords) 
Dimension: 7 

Features

FullyConnected 
Input size: 7 

Output size: 40 

FullyConnected 
Input size: 10 (number of features) 

Output size: 40 LSTM 
Input size: 40 
Hidden size: 20 

LSTM 
Input size: 20 
Hidden size: 48 

FullyConnected 
Input size: 51 

Output size: 282 (vocabulary size) 
Predicted 
Chords

Fig. 2. Diagram of the conditioned model with improved hyper-parameters

Fig. 3. Histogram of the phrase lengths

the internationally most common music theoretical notation
system for harmonic analysis [2]. Therefore, the features
conditioning the model are also used to remove the redundant
information of the chord and hence decrease the vocabulary
size, i.e. the number of unique symbols, to some hundreds
depending on the considered features.

As mentioned before, we propose two different approaches
to handle the data before training. We should mention that
in both approaches, we truncate the total length so that each
of the sequences assigned to every partition is complete. This
means that we don’t need padding and hence an additional
class does not have to be added. This is motivated as it does
not make sense to only have the padding symbol appearing on
one unique sequence on every partition because the saturation
required by this symbol is hardly learned with only one
example. The two different approaches for data handling are:

1) Sequential split: This first approach is based on sequen-
tially splitting the data, which means that the data is taken with
the same order as it appears in the database and, therefore,
it is not randomized. The partitions for train, validation and
test are divided according to the percentages (80%, 10%,
10% respectively), but the number of samples is rounded
considering to not split the same movement into two different
partitions. Note that the test partition is not aimed as a final
result but as to measure the quality of predictions on unseen
data. While we use the training partition to train the model

and the validation to tune the hyper-parameters as usual, our
objective is to predict sequences with any starting chords and
features, and in this case, we don’t have a ground truth to
compare with.

2) Randomized split by phrases: In this second approach,
the data is split by phrases and then randomized. The randomly
sorted phrases are divided in train, validation and test datasets
with the same percentages as before, taking into account the
different lengths of each phrase.

B. Model

The core of the presented model is the RNN, which we
implement with a Long Short-Term Memory (LSTM) [3]
using the Pytorch library [4]. We choose this model because,
as discussed above, the chord sequences have both short-
and long-term dependencies. More concretely, we use the
LSTMCell variant of Pytorch, which only implements one cell
of an LSTM to ease the prediction of sequences with arbitrary
length. This baseline model is an adaptation of a RNN used
to predict the samples of a sinusoidal signal1.

In order to fasten the training of the LSTM, we used the
ground truth labels as input samples instead of using the
predicted ones as when evaluating. This approach is known
as professor forcing [5].

In the baseline model, we simply feed the cleaned chords
into the RNN, but in a more sophisticated approach, we add
an embedding layer of dimension 7 (i.e. different notes per
octave in the Heptatonic scale, which is the most common
in modern Western music) or 12 (i.e. different notes per
octave on the Chromatic scale). The idea of choosing an
embedding dimension consistent with the current musical
representation of the tempered system is inspired by the paper
Neural Discrete Representation Learning [6], where a fully
unsupervised model learned high-level speech descriptors that
were closely related to phonemes.

1https://github.com/pytorch/examples/tree/master/time sequence
prediction

https://github.com/pytorch/examples/tree/master/time_sequence_prediction
https://github.com/pytorch/examples/tree/master/time_sequence_prediction


In order to condition the model, we combine both the
chords and the features by feeding them to independent fully-
connected linear layers that has matching output dimension.
With this setup, we can sum the mappings of the chords and
the features before feeding this tensor to the RNN. This idea
is inspired by the Text-To-Speech system presented in [7],
where they do the same to condition the audio samples on
the acoustic features and add an embedding representing the
speaker. In this paper, this mapping is implemented with a 1-
dimensional Convolutional Neural Network (CNN) of unitary
kernel, but it acts as a linear layer with the only difference that
it accepts more dimensions into it [8]. Our inputs (input chords
and features shown in Figure 2) only have two dimensions; the
batch and the input size (i.e. number of features, dimension
of embedding or simple scalar depending on the model) and
hence it is possible to implement it with a simple linear layer.
This provides a combination of the features that successfully
conditions the outputs RNN. The full model as well as its
parameters are depicted in Figure 2.

C. Cross-validation

In order to tune the hidden sizes of the two LSTM used
in our model, we test several hyper-parameter combinations
and choose the one yielding a lower Cross Entropy Loss. The
hyper-parameters are shown in the diagram of Figure 2. Note
that this tuning was only done for the best model (see Table
I). While testing each of the models, all the hyper-parameters
and the data are exactly the same to provide a fair comparison.

III. EXPERIMENTS AND RESULTS

Our models are first tested using sequences of length 50
samples for both approaches. We choose this value as a trade-
off between having a small value so that the RNN is able
to properly learn the sequences and a large value so that the
network is able to see the short and long-term dependencies
usually present in classical music, as already explained in
II-A. To check proof that our model is not training well due
to sequences that are too long and hence are potential of
generating vanishing gradients during the back-propagation
through time, we also test the model with sequences of 30.
It ended up with roughly the same results with respect to the
loss on the validation partition.

We use 3 features that condition the model and help
improving the prediction as seen in Table I in the comparison
of all the models. These features are the global and local key
and the phrase-end. For the best model, we also try picking
more features, which turn out to improve even more the loss.
Apart from the before mentioned features, we also use the
altchord (alternative analyses of the chords), the length of the
chord, the pedal, the form, figured bass, changes and relative
root. Basically, these are all the features that doesn’t refer to
very specific ones such as the movement or the opus, which
could help in prediction but are not of interest for the purpose
of this research. The extra features considered here, are mostly
sparse, and that’s why they were not included from the very
beggining. Moreover, most of them are too specific and it can

A B C D E F G H

3

4

5

Model

L
os

s

Fig. 4. Boxplots comparing models’ performance

be discussed whether it makes sense or not depending on the
level of specificity desired of the features conditioning the
harmonizer.

Regarding the hidden sizes of each of the LSTM modules,
we do the comparison of all the models with a hidden size
for both LSTMs of 51. This result is taken from the baseline
model for predicting sinusoidal signals mentioned above that
we adapted for our task. Nevertheless, after cross validation
trying several hidden sizes, the setup that works better for our
application is to have a hidden size of 20 for the first LSTM
and 48 for the second one.

In addition to the comparison of test loss for all the models
described in Table I, boxplots showing the variability of the
test loss for each model are also presented in Figure 4.

We can see that we get better results with the randomized
split by phrase approach, explained in section II-A, for all
the configurations tested. We should also note that using an
embedding of size 7 leads to better results in both approaches.
Moreover, we can find some meaningful representation with
the embeddings of this size as seen in the snapshot of Figure
5. Note that the proximity of the elements to the observer is
shown by the size of the chord numeral, and most of the nearer
ones are variants of the seventh chord, i.e. VII.

Having a deeper look at the results for that randomized
split by phrase approach, we can also observe that adding the
embedding and conditions to our model improve the results, as
expected. Therefore, the best results are obtained with model I
(conditioned model, with randomized split by phrase approach
and with an embedding size of 7). The loss curves for the train
and validation sets are presented in Figure 6.

Regarding the learning strategy, the chosen optimizer is
Adaptive Moment Estimation (ADAM) [9]. ADAM is a
stochastic gradient descent algorithm with adaptive learning
rate that not only changes the weights following the direction
based on the gradient of the loss function, which in our case
is the Cross Entropy loss, with respect to the parameters, but



Model Architecture Data cleaning approach Embedding size Cross-Entropy Loss

A Chords Sequential None 3.4885 ± 0.3073
B Randomized None 3.3026 ± 0.1129

C

Embedded chords
Sequential 7 3.6213 ± 0.3801

D 12 3.6837 ± 0.3698
E Randomized 7 3.2778 ± 0.1227
F 12 3.4004 ± 0.1177

H Conditioned model Sequential 7 3.4263 ± 0.1690
I Randomized 7 3.2453 ± 0.1193

TABLE I
LOSS VALUES OBTAINED FOR EVERY MODEL

Fig. 5. Projection of the 7-dimensional embedding into 3 dimensions using
Principal Component Analysis

100 200 300 400

3

3.5

4

4.5

5

5.5

Epochs

Cross Entropy Loss Training Loss
Validation Loss

Fig. 6. Loss curve for the best model (I)

also based on the values of the previous updates. The learning
rate is set to 0.01 and the other parameters that define ADAM
are chosen as the default ones in the Pytorch implementation.
A learning rate controller is also implemented using a cosine
annealing schedule [10]. In this case, learning rate is defined
with a cosine and thus it has a certain periodicity of going
up and down. The periodicity of the learning rates given by
cosine annealing is set to 50.

The addition of gradient clipping tries to solve the already

mentioned the typical problems faced with RNNs and stated
to tackle them by truncating the inputs and using LSTMs.
To prevent exploding gradients, we set the maximum allowed
value of the gradients to 0.5, so they are clipped in the range
[-0.5, 0.5].

Finally, our final model achieves a loss of 3.0514± 0.2556
(see Table I to see improvement of the model). For this last, we
also compare the accuracy, which turn out to be very low and
around 25% for this optimal setup. Although the seemingly
bad result for this last metric, we think that accuracy is not
representative of our problem given that we have a lot of
different chords and the distances between them are not the
same. Think for example in the difference between I and VII,
which have all the different notes, or I and I6, which have
exactly the same notes but in different ordering.

Regarding the predictions, we can find that the algorithm
successfully learned some of the most used transitions as I
- V, but for some sequences that are very long, some chords
saturate, meaning that they appear several times consecutively.
However, when improving the results with respect to the
test loss, the predictions are even more saturated (all the
predictions are the same chord). That leads to the conclusion
that the loss used is not very representative for our problem,
so we should find another that fits better.

IV. CONCLUSIONS

This model automatizes the task of harmonization, which
can be used to help composing new music with Beethoven’s
style of writing string quartets. Given a melody, one can use
the chord sequences to add more instruments to create a more
elaborated musical work. This is enhanced by the option to
condition the model, so one can choose parameters such as
both the local and global key of the sequence, the phrase
endings, etc.

The main problem encountered in this project is that training
a RNN for some task with a large vocabulary size like in
our case, we need huge amounts of data to achieve higher
accuracies. This dataset is singular in its kind and it’s very
costly to create new data similar to it. That’s why we propose
a new data cleaning approach, based in taking overlapping
sequences, so we can train the model over more data and start
sequences from a wider variety of chords.



In order to compare our model, we also consider appropriate
to reconsider which loss function fits better to this problem
than the accuracy.

The conditioning forces the RNN to predict chords given
some constraints, but it can be argued that parameters such as
the phrase ending can easily not be successfully used because
a phrase cannot end at every point. In this setup, it is very
natural to think that this feature as well as others, like the
change of key, have a smooth transition on the real chord
sequences. This means that the model should be able to not
only see the next features but also further in the future. This
approach presented in [7] has already been proven for Text-
To-Speech, which as well as in our model, the future features
that will condition the model are known beforehand.

Finally, to promote the development of this project as well
as the use of the Annotated Beethoven Corpus, which is
already available in the repository of the Digital and Cognitive
Musicology Laboratory of EPFL2, the source code of this
project is available on GitHub3.

V. ACKNOWLEDGEMENTS

This research was promoted and mentored by Fabian C.
Moss, PhD candidate at the Digital and Cognitive Musicology
Laboratory of the Digital Humanities department at EPFL
(https://dhlab.epfl.ch/).

REFERENCES

[1] M. F. Neuwirth M, Harasim D and R. M, “The annotated
beethoven corpus (abc): A dataset of harmonic analyses of all
beethoven string quartets,” 2018, front. Digit. Humanit. 5:16.
doi: 10.3389/fdigh.2018.00016. [Online]. Available: https://github.com/
DCMLab/ABC

[2] E. Aldwell and A. Cadwallader, Harmony and Voice Leading. Cengage
Learning, Jan. 2018, google-Books-ID: T69EDwAAQBAJ.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[5] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio,
“Professor Forcing: A New Algorithm for Training Recurrent Networks,”
NIPS, 2016. [Online]. Available: http://arxiv.org/abs/1610.09038

[6] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural
Discrete Representation Learning,” in NIPS, 2017. [Online]. Available:
http://arxiv.org/abs/1711.00937

[7] O. Barbany, A. Bonafonte, and S. Pascual, “Multi-Speaker Neural
Vocoder,” IberSpeech, 2018. [Online]. Available: http://iberspeech2018.
talp.cat/download/IberSPEECH 2018-Proceedings.pdf

[8] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks
for matlab,” in Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[10] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent
with restarts,” CoRR, vol. abs/1608.03983, 2016. [Online]. Available:
http://arxiv.org/abs/1608.03983

2https://github.com/DCMLab/ABC
3https://github.com/Barbany/Automatic-Harmonization

https://dhlab.epfl.ch/
https://github.com/DCMLab/ABC
https://github.com/DCMLab/ABC
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1610.09038
http://arxiv.org/abs/1711.00937
http://iberspeech2018.talp.cat/download/IberSPEECH_2018-Proceedings.pdf
http://iberspeech2018.talp.cat/download/IberSPEECH_2018-Proceedings.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1608.03983
https://github.com/DCMLab/ABC
https://github.com/Barbany/Automatic-Harmonization

	Introduction
	Methodology
	Data cleaning
	Sequential split
	Randomized split by phrases

	Model
	Cross-validation

	Experiments and results
	Conclusions
	Acknowledgements
	References

